A Naïve Bayes' Probabilistic Classifier for Modeling the Quality of Care in a Healthcare Setting
Autor: | Amos Okutse |
---|---|
EAN: | 9783346142788 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 06.04.2020 |
Kategorie: | |
Schlagworte: | Machine Learning Machine Learning in healthcare Naive Bayes Classifier Predictive Modeling Quality assessment Quality of Care Statistical Modeling in R |
13,99 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Academic Paper from the year 2019 in the subject Mathematics - Statistics, grade: 75, , course: Biostatistics, language: English, abstract: In this paper, we implement a Naïve Bayesian probabilistic classifier for modeling the quality of patient care in a healthcare setting. Using secondary data, we assess the effectiveness of the Naïve Bayes machine learning classifier in modeling the probability of poor care. Exploratory data analytics are performed and visualized using bar graphs, density plots, and heatmaps. We evaluate the performance of this classifier using confusion matrices, specificity, and sensitivity indices. R software is used for statistical programming. The Naïve Bayes classifier yielded an accuracy of 77%;95%CI (0.5774, 0.9138). The classifier had sensitivity and specificity values of 0.80 and 0.71, respectively; denoting the chance of poor care being classed as poor care when it is poor care and the likelihood of poor care being reported as quality care, respectively. The proportion of poor care was 74%. The implementation of quality assessment systems in health is likely to drive efficiency in terms of patient care.