A New Kind of Computational Biology
Autor: | Dutta, Adip Ghosh, Soumyabrata Pal Chaudhuri, Parimal Pal Choudhury, Somshubhro |
---|---|
EAN: | 9789811316388 |
Auflage: | 001 |
Sachgruppe: | Informatik, EDV |
Sprache: | Englisch |
Seitenzahl: | 356 |
Produktart: | Gebunden |
Veröffentlichungsdatum: | 06.10.2018 |
Untertitel: | Cellular Automata Based Models for Genomics and Proteomics |
Schlagworte: | Automatentheorie Biochemie Bioinformatik Biologie Biologie / Mikrobiologie Chemie / Biochemie DV-gestützte Biologie/Bioinformatik Datenverarbeitung / Simulation Erblehre Genetik IT Informatik Informatik / Bioinformatik Informationstechnologie Mensch / Biologie Mikrobiologie (nicht-medizinisch) Mikrobiologie - Mikroorganismus Schnittstelle (EDV) Technologie / Informationstechnologie Theoretische Informatik in-silico; CellularAutomata(CA); CAEvolution; AttractorBasin; TransitionandCyclicStates; Bioinformatics; computationalbiology; Codon |
74,89 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book reflects more than three decades of research on Cellular Automata (CA), and nearly a decade of work on the application of CA to model biological strings, which forms the foundation of 'A New Kind of Computational Biology' pioneered by the start-up, CARLBio. After a brief introduction on Cellular Automata (CA) theory and functional biology, it reports on the modeling of basic biological strings with CA, starting with the basic nucleotides leading to codon and anti-codon CA models. It derives a more involved CA model of DNA, RNA, the entire translation process for amino acid formation and the evolution of protein to its unique structure and function. In subsequent chapters the interaction of Proteins with other bio-molecules is also modeled. The only prior knowledge assumed necessary is an undergraduate knowledge of computer programming and biology. The book adopts a hands-on, ¿do-it-yourself¿ approach to enable readers to apply the method provided to derive the CArules and comprehend how these are related to the physical ¿rules¿ observed in biology. In a single framework, the authors have presented two branches of science ¿ Computation and Biology. Instead of rigorous molecular dynamics modeling, which the authors describe as a Bottoms-Up model, or relying on the Top-Down new age Artificial Intelligence (AI) and Machine Language (ML) that depends on extensive availability of quality data, this book takes the best from both the Top-Down and Bottoms-up approaches and establishes how the behavior of complex molecules is represented in CA. The CA rules are derived from the basic knowledge of molecular interaction and construction observed in biological world but mapped to a few subset of known results to derive and predict results. This book is useful for students, researchers and industry practitioners who want to explore modeling and simulation of the physical world complex systems from a different perspective. It raises the inevitable the question ¿ ¿Are life and the universe nothing but a collection of continuous systems processing information¿.