Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems

This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.
 


Dr. Ding Wang is an associate professor in The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences. His main research interests cover adaptive and learning control systems, complex systems and intelligent control, neural networks and neural computing.

Dr. Chaoxu Mu is an associate professor in school of electrical and information engineering, Tianjin University. Her research interests focus mainly on non-linear control theory and applications, adaptive dynamic programming and robust control.