Advanced Driver Intention Inference
Autor: | Yang Xing, Chen Lv, Dongpu Cao |
---|---|
EAN: | 9780128191149 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 15.03.2020 |
Untertitel: | Theory and Design |
Kategorie: | |
Schlagworte: | ADAS Automated vehicles Braking intensity Driver behavior GPS Intelligent vehicles Lane change intention Lidar Machine learning Traffic lane Vehicle dynamics |
113,00 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Advanced Driver Intention Inference: Theory and Design describes one of the most important function for future ADAS, namely, the driver intention inference. The book contains the state-of-art knowledge on the construction of driver intention inference system, providing a better understanding on how the human driver intention mechanism will contribute to a more naturalistic on-board decision system for automated vehicles. - Features examples of using machine learning/deep learning to build industry products - Depicts future trends for driver behavior detection and driver intention inference - Discuss traffic context perception techniques that predict driver intentions such as Lidar and GPS
Yang Xing received his Ph. D. degree from Cranfield University, UK, in 2018. He is currently a research fellow with the department of mechanical and aerospace engineering at Nanyang Technological University, Singapore. His research interests include machine learning, driver behavior modeling, intelligent multi-agent collaboration, and intelligent/autonomous vehicles. His work focuses on the understanding of driver behaviors using machine-learning methods and intelligent and automated vehicle design. He received the IV2018 Best Workshop/Special Issue Paper Award. Dr. Xing serves as a Guest Editor for IEEE Internet of Thing, and he is an active reviewer for IEEE Transactions on Vehicular Technology, Industrial Electronics, and Intelligent Transportation Systems.
Yang Xing received his Ph. D. degree from Cranfield University, UK, in 2018. He is currently a research fellow with the department of mechanical and aerospace engineering at Nanyang Technological University, Singapore. His research interests include machine learning, driver behavior modeling, intelligent multi-agent collaboration, and intelligent/autonomous vehicles. His work focuses on the understanding of driver behaviors using machine-learning methods and intelligent and automated vehicle design. He received the IV2018 Best Workshop/Special Issue Paper Award. Dr. Xing serves as a Guest Editor for IEEE Internet of Thing, and he is an active reviewer for IEEE Transactions on Vehicular Technology, Industrial Electronics, and Intelligent Transportation Systems.