Advances in Transitional Flow Modeling
Autor: | Chunhua Sheng |
---|---|
EAN: | 9783319325767 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 26.11.2016 |
Untertitel: | Applications to Helicopter Rotors |
Kategorie: | |
Schlagworte: | Computational Fluid Dynamics Flow Separation Modelling and Simulation Rotorcraft Transition Modelling Turbulence Modelling |
53,49 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry-Menter local correlation-based transition model, integrated with both one-equation Spalart-Allmaras (S-A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors.
The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.
As an Associate Professor in the Department of Mechanical, Industrial, and Manufacturing Engineering at the University of Toledo, Dr. Chunhua Sheng has over twenty years of research experience in Computational Fluid Dynamics (CFD) in the areas of fixed-wing and rotary-wing aircraft, wind turbines, and jet propulsion systems. Over the last decade, he has received nearly three million dollars of research funding from various U.S. federal agencies and designated industries. His recent works included the Bell-Boeing quad tiltrotor aeroelastic study and Bell Helicopter M427, M429, and M525 series of civil helicopters. Currently he is working with U.S. aerospace industries to conduct computational design and optimization for Future Vertical Lift (FVL) rotorcraft. He is also working on innovative design concepts for offshore wind turbines using computational simulations to support the project funded by the U.S. Department of Energy Wind Energy program