Application of Taguchi L27 orthogonal array design to optimize Reactive Orange 12 Dye adsorption onto Magnetic Mn3O4 and MnFe2O4 Nanocomposite

Research Paper (postgraduate) from the year 2016 in the subject Environmental Sciences, grade: 9.00, , language: English, abstract: In this study, Taguchi L27 experimental design was utilized to optimize adsorption of Reactive Orange 12 (RO 12) dye onto magnetic manganese oxide and manganese ferrite (MO-MnF) nanocomposite. The MO-MnF nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) measurements. The experimental design was constructed with five factors (solution pH, RO 12 dye concentration, MO-MnF dose, contact time, and reaction temperature) at three different levels. The experimental conditions were optimized to maximize the RO 12 dye removal efficiency where signal-to-noise (S/N) ratio was considered as criteria. Optimum values of 2.0, 1.0 g/L, 60 min, 50 mg/L and 60°C were obtained for solution pH, MO-MnF dose, contact time, concentration of RO 12 dye, and reaction temperature, respectively for maximum RO 12 dye removal efficiency of 99.32%. This adsorption process proficiently followed pseudo-second-order and intra-particle diffusion models and exhibited applicability of Langmuir monolayer adsorption with maximum adsorption capacity of 207.90 mg/g at room temperature.