Big Data Science in Finance
Autor: | Aldridge, Irene Avellaneda, Marco |
---|---|
EAN: | 9781119602989 |
Sachgruppe: | Wirtschaft |
Sprache: | Englisch |
Seitenzahl: | 336 |
Produktart: | Gebunden |
Veröffentlichungsdatum: | 27.01.2021 |
Schlagworte: | Computers - General Information |
130,50 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street--applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: * Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples * Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) * Covers vital topics in the field in a clear, straightforward manner * Compares, contrasts, and discusses Big Data and Small Data * Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.