Carbon Capture Technologies for Gas-Turbine-Based Power Plants
Autor: | Hamidreza Gohari Darabkhani, Hirbod Varasteh, Bahamin Bazooyar |
---|---|
EAN: | 9780128188699 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 24.09.2022 |
Kategorie: | |
Schlagworte: | ?Air separation unit (ASU) Aspen Plus software Brayton cycle CES cycle CO2 compression and purification unit (CPU) Carbon capture and storage (CCS) Combustion outlet pressure (COP) Cryogenic ASU Energy and exergy analysis Exergy destruction |
155,00 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Carbon Capture Technologies for Gas-Turbine-Based Power Plants explores current progress in one of the most capable technologies for carbon capture in gas-turbine-based power plants. It identifies the primary benefits and shortcomings of oxy-fuel combustion CO2 capture technology compared to other capture technologies such as pre-combustion and post-combustion capture. This book examines over 20 different oxy-combustion turbine (oxyturbine) power cycles by providing their main operational parameters, thermodynamics and process modelling, energy and exergy analysis and performance evaluation. The conventional natural gas combined cycle (NGCC) power plant with post-combustion capture used as the base-case scenario. The design procedure and operational characteristics of a radial NOx-less oxy-fuel gas turbine combustor are presented with CFD simulation and performance analysis of the heat exchanger network and turbomachinery. Overview of oxygen production and air separation units (ASU) and CO2 compression and purification units (CPU) are also presented and discussed. The most advanced stages of development for the leading oxyturbine power cycles are assessed using techno-economic analysis, sensitivity, risk assessments and levelized cost of energy (LCOE) and analysing technology readiness level (TRL) and development stages. The book concludes with a road map for the development of future gas turbine-based power plants with full carbon capture capabilities using the experiences of the recently demonstrated cycles. - Analyzes more than 20 models of oxyturbine power cycles, identifying the main parameters regarding their operation, process and performance simulations and energy and exergy analysis - Provides techno-economic analysis, TRL, sensitivity and risk analysis, LCOE and stages of development for oxy-combustion turbine power plants - Presents the design procedure and CFD simulation of a radial NOx-less oxy-fuel gas turbine combustor exploring its influence on heat exchanger network and turbomachinery - Supports practitioners, policymakers and energy industry managers seeking pathways to convert coal-fired power plants to gas-fired plants with zero CO2 emission
Hamidreza Gohari Darabkhani has over two decades of industrial and academic work experience in energy and gas turbine systems. He received his PhD in Mechanical Engineering (Combustion & Energy) from the University of Manchester in 2010, then joined Cranfield University for six years, working on several research council and industry-funded pilot-scale energy projects. Hamidreza is now a professor of low carbon and renewable energy systems at Staffordshire University and working on state-of-the-art projects on CCS technologies, Oxyturbine power cycles and Biofuel/H2/Syngas Micro-CHP systems.
Hamidreza Gohari Darabkhani has over two decades of industrial and academic work experience in energy and gas turbine systems. He received his PhD in Mechanical Engineering (Combustion & Energy) from the University of Manchester in 2010, then joined Cranfield University for six years, working on several research council and industry-funded pilot-scale energy projects. Hamidreza is now a professor of low carbon and renewable energy systems at Staffordshire University and working on state-of-the-art projects on CCS technologies, Oxyturbine power cycles and Biofuel/H2/Syngas Micro-CHP systems.