Catalan's Conjecture
Autor: | René Schoof |
---|---|
EAN: | 9781848001855 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 02.12.2008 |
Kategorie: | |
Schlagworte: | B Catalan's conjecture General Algebraic Systems Mathematics Number Theory algebraic number theory diophantine equations general |
41,64 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Eugène Charles Catalan made his famous conjecture - that 8 and 9 are the only two consecutive perfect powers of natural numbers - in 1844 in a letter to the editor of Crelle's mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it.
Catalan's Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu's proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine's theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further.
Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.
Catalan's Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu's proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine's theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further.
Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.