Cellular Actuators: Modularity and Variability in Muscle-Inspired Actuation describes the roles actuators play in robotics and their insufficiency in emerging new robotic applications, such as wearable devices and human co-working robots where compactness and compliance are important. Piezoelectric actuators, the topic of this book, provide advantages like displacement scale, force, reliability, and compactness, and rely on material properties to provide displacement and force as reactions to electric stimulation. The authors, renowned researchers in the area, present the fundamentals of muscle-like movement and a system-wide study that includes the design, analysis, and control of biologically inspired actuators. This book is the perfect guide for researchers and practitioners who would like to deploy this technology into their research and products. - Introduces Piezoelectric Actuators concepts in a system wide integrated approach - Acts as a single source for the design, analysis, and control of actuator arrays - Presents applications to illustrate concepts and the potential of the technology - Details the physical assembly possibilities of Piezo actuators - Presents fundamentals of bio inspired actuation - Introduces the concept of cellular actuators

Jun Ueda is an Associate Professor at G.W.W. School of Mechanical Engineering at the Georgia Institute of Technology. He has published over 100 peer reviewed academic papers and is an expert in system dynamics, robust control in robotics and the development of sensing and actuation devices for industry and healthcare applications