Characteristics Finite Element Methods in Computational Fluid Dynamics
Autor: | Joe Iannelli |
---|---|
EAN: | 9783540453437 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 24.09.2006 |
Kategorie: | |
Schlagworte: | Compressible Flows Computational Fluid Dynamics Finite Elements Free-Surface Flows Incompressible Flows Infinite-Directional Upwind Multi-Dimensional Reactive Flows convection fluid dynamics fluid mechanics |
213,99 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.
Joe Iannelli received a Diploma in Fluid Dynamics from the von Karman Institute for Fluid Dynamics, a summa cum laude MSc 'Laurea' in Aeronautical Engineering from the University of Palermo, and his PhD in Engineering Science, with concentration in compressible-flow CFD, from the University of Tennessee. After investigating CFD algorithms for reactive flows at ICOMP, NASA Lewis, now Glenn, he has been a tenured Associate Professor of Mechanical, Aerospace, and Biomedical Engineering at the University of Tennessee, and is now an Associate Professor ( Reader ) of Aeronautical Engineering at the City University of London, where he also serves as director of the historically first British Center for Aeronautics. A senior member of the American Institute of Aeronautics and Astronautics and the recipient of several awards, including an Exxon Professorship and an Alumni Association Outstanding Teaching Award, both from the University of Tennessee, he has researched CFD algorithms for over two decades, has authored numerous papers in Finite Element CFD and remains actively engaged in teaching and research in Propulsion and Engineering and Scientific Computing.