Computational Approaches to Energy Materials
Autor: | Richard Catlow, Alexey Sokol, Aron Walsh |
---|---|
EAN: | 9781118551448 |
eBook Format: | ePUB |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 03.04.2013 |
Kategorie: | |
Schlagworte: | Alexey Sokol Aron Walsh Computational Approaches to Energy Materials Richard Catlow batteries and fuel cells energy research fission and fusion reactors hydrogen storage and the activation solar energy technologies storage of carbon dioxide |
135,99 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process.
Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the development and optimization of energy materials, outlining their strengths, limitations, and future applications. The review of techniques includes current methodologies based on electronic structure, interatomic potential and hybrid methods. The methodological components are integrated into a comprehensive survey of applications, addressing the major themes in energy research.
Topics covered include:
• Introduction to computational methods and approaches
• Modelling materials for energy generation applications: solar energy and nuclear energy
• Modelling materials for storage applications: batteries and hydrogen
• Modelling materials for energy conversion applications: fuel cells, heterogeneous catalysis and solid-state lighting
• Nanostructures for energy applications
This full colour text is an accessible introduction for newcomers to the field, and a valuable reference source for experienced researchers working on computational techniques and their application to energy materials.