Coordination in Multi-Agent Systems

Coordination, as an art of managing interdependency among activities, will be extensively studied in this book under the multi-agent system paradigm. To model the information essential to agent coordination, this book proposes a Fuzzy Subjective Task Structure (FSTS) model, through which agent coordination is viewed as a Decision-Theoretic Planning problem, to which reinforcement learning can be applied. Two learning algorithms, "coarse-grained" and "fine-grained" are presented to address agent coordination at two different levels. The "coarse-grained" algorithm operates at one level and tackles hard system constraints, while the "fine-grained" at another level and for soft constraints. Besides reinforcement learning, this book also proposes a bio-inspired approach to agent coordination. A dynamic coordination model inspired by biological metabolic system is presented. Agent coordination is achieved as every agent performs iteratively a dynamic optimization process, which utilizes explicitly the global dynamics captured through the metabolic model. All research results presented in this book are experimentally evaluated to be effective and useful in practice.

Weitere Produkte vom selben Autor

Download
PDF
Download
ePUB/PDF
Circularity of Plastics Zibiao Li, Jason Y.C. Lim, Chen-Gang Wang

210,00 €*
Individual Retweeting Behavior on Social Networking Sites Shi, Juan, Chen, Gang, Lai, Kin Keung

106,99 €*