Data Mining im Business Development. Optimierungspotenziale und Empfehlungen für Maschinenbauunternehmen
Autor: | Lisander Kajtazi |
---|---|
EAN: | 9783346912343 |
eBook Format: | |
Sprache: | Deutsch |
Produktart: | eBook |
Veröffentlichungsdatum: | 26.07.2023 |
Kategorie: | |
Schlagworte: | Assoziation Big Data Business Development Clusteranalyse Data Data Mining Daten Datenanalyse Innovation Klassifikation Machine Learning Mustererkennung Neuronale Netzwerke Predictive Analysis Technologie Technology Text Mining Vorher |
15,99 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Bachelorarbeit aus dem Jahr 2022 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,3, Hochschule für angewandte Wissenschaften München (Betriebswirtschaftlehre), Sprache: Deutsch, Abstract: Die vorliegende Bachelorarbeit untersucht den Einsatz von Data-Mining-Technologien im Bereich des Business Development, um die Fachbereiche eines Maschinenbauunternehmens zu optimieren. Die Arbeit zielt darauf ab, verschiedene Anwendungsfälle von Data Mining im Business Development zu identifizieren und zu analysieren. Data Mining bezieht sich auf die Analyse großer Datenmengen, um Muster, Zusammenhänge und Erkenntnisse zu extrahieren. Die Nutzung dieser Technologie kann dazu beitragen, fundierte Entscheidungen im Business Development zu treffen und die Effizienz der Fachbereiche zu verbessern. Anhand eines konkreten Maschinenbauunternehmens als Fallbeispiel werden verschiedene Data-Mining-Ansätze untersucht, um deren Potenzial zur Optimierung der Fachbereiche zu bewerten. Dies kann beispielsweise die Anwendung von Clusteranalyse zur Segmentierung von Kunden, die Nutzung von prädiktiver Analyse zur Absatzprognose oder die Identifizierung von Mustern in Produktionsdaten zur Prozessoptimierung umfassen. Die Arbeit beinhaltet eine kritische Analyse der Anwendungsfälle, wobei Vor- und Nachteile, Herausforderungen und mögliche Lösungsansätze diskutiert werden. Dabei werden auch Aspekte wie Datenschutz und Datensicherheit berücksichtigt, da der Umgang mit sensiblen Unternehmensdaten eine wichtige Rolle spielt. Am Ende der Arbeit werden Empfehlungen für das Maschinenbauunternehmen und andere ähnliche Organisationen abgeleitet, um Data Mining effektiv im Business Development einzusetzen und die Fachbereiche erfolgreich zu optimieren. Insgesamt bietet diese Bachelorarbeit eine kritische Analyse der Anwendungsfälle von Data Mining-Technologien im Business Development und liefert praktische Einblicke für Unternehmen des Maschinenbaus oder andere Branchen, die diese fortschrittliche Datenanalysetechnologie nutzen möchten, um ihre Fachbereiche zu verbessern.