Deep Learning through Sparse and Low-Rank Modeling
Autor: | Zhangyang Wang, Yun Fu, Thomas S. Huang |
---|---|
EAN: | 9780128136607 |
eBook Format: | ePUB |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 11.04.2019 |
Kategorie: | |
Schlagworte: | 3D image Action recognition Architecture Autoencoder Bi-level optimization Clustering Compressive sensing Deep learning Dictionary learning Domain adaptation Fashion Hyperspectral image classification Image dehazing Image super-resolutio |
86,95 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. - Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks - Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models - Provides tactics on how to build and apply customized deep learning models for various applications
Dr. Zhangyang (Atlas) Wang is an Assistant Professor of Computer Science and Engineering (CSE), at the Texas A&M University (TAMU), since August 2017. During 2012-2016, he was a Ph.D. student in the Electrical and Computer Engineering (ECE) Department, at the University of Illinois at Urbana-Champaign (UIUC). He was a former research intern with Microsoft Research (2015), Adobe Research (2014), and US Army Research Lab (2013). Dr. Wang has published over 70 papers in top-tier venues, in the broad fields of machine learning, computer vision, artificial intelligence, and interdisciplinary data science. He has published 2 books and 1 chapter, has been granted 3 patents, and has received over 20 research awards and scholarships. Dr. Wang regularly serves as tutorial speakers, guest editors, area chairs, session chairs, TPC members, and workshop organizers at leading conferences and journals.
Dr. Zhangyang (Atlas) Wang is an Assistant Professor of Computer Science and Engineering (CSE), at the Texas A&M University (TAMU), since August 2017. During 2012-2016, he was a Ph.D. student in the Electrical and Computer Engineering (ECE) Department, at the University of Illinois at Urbana-Champaign (UIUC). He was a former research intern with Microsoft Research (2015), Adobe Research (2014), and US Army Research Lab (2013). Dr. Wang has published over 70 papers in top-tier venues, in the broad fields of machine learning, computer vision, artificial intelligence, and interdisciplinary data science. He has published 2 books and 1 chapter, has been granted 3 patents, and has received over 20 research awards and scholarships. Dr. Wang regularly serves as tutorial speakers, guest editors, area chairs, session chairs, TPC members, and workshop organizers at leading conferences and journals.