Designing Secure IoT Devices with the Arm Platform Security Architecture and Cortex-M33
Autor: | Trevor Martin |
---|---|
EAN: | 9780128214732 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 28.04.2022 |
Kategorie: | |
Schlagworte: | ARM Trust Zone Cortex M23 and M33 IoT Keil MDK-ARM NXP LPCXpresso tool chains |
65,95 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Designing Secure IoT devices with the Arm Platform Security Architecture and Cortex-M33 explains how to design and deploy secure IoT devices based on the Cortex-M23/M33 processor. The book is split into three parts. First, it introduces the Cortex-M33 and its architectural design and major processor peripherals. Second, it shows how to design secure software and secure communications to minimize the threat of both hardware and software hacking. And finally, it examines common IoT cloud systems and how to design and deploy a fleet of IoT devices. Example projects are provided for the Keil MDK-ARM and NXP LPCXpresso tool chains. Since their inception, microcontrollers have been designed as functional devices with a CPU, memory and peripherals that can be programmed to accomplish a huge range of tasks. With the growth of internet connected devices and the Internet of Things (IoT), 'plain old microcontrollers are no longer suitable as they lack the features necessary to create both a secure and functional device. The recent development by ARM of the Cortex M23 and M33 architecture is intended for today's IoT world. - Shows how to design secure software and secure communications using the ARM Cortex M33-based microcontrollers - Explains how to write secure code to minimize vulnerabilities using the CERT-C coding standard - Uses the mbedTLS library to implement modern cryptography - Introduces the TrustZone security peripheral PSA security model and Trusted Firmware - Legal requirements and reaching device certification with PSA Certified
Trevor Martin graduated from Brunel University in 1988 with an Honors degree in electrical and electronics engineering. In the same year, he began work as a junior hardware engineer at Philips Medical Systems. He joined Hitex in 1992 as a technical specialist for 8-bit microcontroller development tools. This included the 8051,68HC11\05\08 microcontrollers. He also gained experience with networking protocols such as CAN, USB, and TCP/IP. Since 2000, he has been supporting ARM-based microcontrollers, initially ARM7 and ARM9 CPU then moving to Cortex-M processor. To promote these devices, he has worked closely with both NXP and ST and also TI and Freescale to a lesser extent. Since 2005, he has written a number of 'Insider's Guide books that are introductory tutorials to ARM-based microcontroller families such as LPC2000, STR9, and STM32. He also runs regular training courses, a general Cortex Microcontroller workshop and also device-specific courses."
Trevor Martin graduated from Brunel University in 1988 with an Honors degree in electrical and electronics engineering. In the same year, he began work as a junior hardware engineer at Philips Medical Systems. He joined Hitex in 1992 as a technical specialist for 8-bit microcontroller development tools. This included the 8051,68HC11\05\08 microcontrollers. He also gained experience with networking protocols such as CAN, USB, and TCP/IP. Since 2000, he has been supporting ARM-based microcontrollers, initially ARM7 and ARM9 CPU then moving to Cortex-M processor. To promote these devices, he has worked closely with both NXP and ST and also TI and Freescale to a lesser extent. Since 2005, he has written a number of 'Insider's Guide books that are introductory tutorials to ARM-based microcontroller families such as LPC2000, STR9, and STM32. He also runs regular training courses, a general Cortex Microcontroller workshop and also device-specific courses."