Die Optimierung des B2C-Kundenservice durch KI

Bachelorarbeit aus dem Jahr 2022 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,3, (IU Internationale Hochschule), Sprache: Deutsch, Abstract: Das Ziel dieser Arbeit ist die Entwicklung und Validierung eines spezifischen Vorgehensmodells für die Nutzung von KI-basierter Text-Klassifikation von E-Mails im B2C-Kundenservice, um eine Lücke zwischen allgemeinen Machine Learning-Vorgehensmodellen und praktisch anwendbaren Leitfäden zu schließen. Durch die Anwendung von Design Science Research wird ein neues Modell vorgeschlagen, das auf die Bewertung von Potenzialen für die Text-Klassifikation von E-Mails ausgerichtet ist. Diese Arbeit nimmt eine realitätsnahe Stichprobe von E-Mails aus dem Kundenservice eines Unternehmens und analysiert diese mithilfe der SIPOC-Methode, um relevante Prozess-Klassen für die Text-Klassifikation zu identifizieren. Dadurch wird ein praxisnaher Beitrag zur Optimierung des Kundenservice durch effiziente E-Mail-Klassifizierung geleistet. Die vorliegende Arbeit zeigt, wie die Ergebnisse einer SIPOC-Analyse genutzt werden können, um relevante Prozess-Klassen für den späteren Einsatz des E-Mail-Klassifikators zu identifizieren.

Verwandte Artikel

Die Optimierung des B2C-Kundenservice durch KI Arbter-Hubrich, Monika

42,95 €*

Weitere Produkte vom selben Autor

Download
PDF
Data Vault Modellierung anhand eines Kassenbons Monika Arbter-Hubrich

13,99 €*