Die Unendlichkeit der natürlichen Zahlen und die Beweismethode der vollständigen Induktion
Autor: | Nina Wingerter, Florian Grondke |
---|---|
EAN: | 9783638816885 |
eBook Format: | PDF/ePUB |
Sprache: | Deutsch |
Produktart: | eBook |
Veröffentlichungsdatum: | 27.06.2007 |
Kategorie: | |
Schlagworte: | Beweismethode Fachliches Induktion Seminar Unendlichkeit Zahlbereiche Zahlen |
13,99 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Studienarbeit aus dem Jahr 2006 im Fachbereich Mathematik - Sonstiges, Note: 1,3, Westfälische Wilhelms-Universität Münster (Institut für Didaktik der Mathematik), Veranstaltung: Fachliches Seminar: Zahlbereiche, Sprache: Deutsch, Abstract: [...] Die Menge der natürlichen Zahlen wird über die Peano-Axiome definiert. Wenn wir nun davon ausgehen, dass alle Axiome erfüllt sind, müssen in dieser Menge sämtliche Elemente der natürlichen Zahlen enthalten sein. Rekursiv lässt sich nach den Axiomen der Bereich der natürlichen Zahlen auch so definieren: n1=1; n2=n1+1 Mit dieser Schreibweise kann man erkennen, dass die Menge der natürlichen Zahlen unendlich viele Elemente aufweist, da jede Zahl einen Nachfolger besitzt und deshalb immer eine größere Zahl existiert. Über das vierte Peano-Axiom kann man hier anmerken, das dieses die Grundlage für die Beweismethode der vollständigen Induktion ist. 1.2 Hilberts Hotel Um der Unendlichkeit ein wenig ihre Abstraktheit zu nehmen und ihr 'in mancher Hinsicht ganz anderes Verhalten als von endlichen Mengen' (Reis 2005, S. 33) zu erläutern, wird auch gerne das bekannte Beispiel von David Hilbert (1862-1943) benutzen. [...]