Differential Transformation Method for Mechanical Engineering Problems

Differential Transformation Method for Mechanical Engineering Problems focuses on applying DTM to a range of mechanical engineering applications. The authors modify traditional DTM to produce two additional methods, multi-step differential transformation method (Ms-DTM) and the hybrid differential transformation method and finite difference method (Hybrid DTM-FDM). It is then demonstrated how these can be a suitable series solution for engineering and physical problems, such as the motion of a spherical particle, nanofluid flow and heat transfer, and micropolar fluid flow and heat transfer. - Presents the differential transformation method and why it holds an advantage over higher-order Taylor series methods - Includes a full mathematical introduction to DTM, Ms-DTM, and Hybrid DTM - Covers the use of these methods for solving a range of problems in areas such as nanofluid flow, heat transfer, and motion of a spherical particle in different conditions - Provides numerous examples and exercises which will help the reader fully grasp the practical applications of these new methods

Mohammad Hatami is a Mechanical Engineering Associate Professor at Esfarayen University of Technology, Esfarayen, North Khorasan, Iran. He also was an associate professor at Ferdowsi University of Mashhad, and was selected as a young talent associate professor at Xi'an Jiaotong University. He completed his Ph.D. in energy conversion at Babol University of Technology whilst working as a Ph.D. visiting scholar researcher at Eindhoven University of Technology (TU/e) in the Netherlands. Dr. Hatami was previously a post-doctoral researcher at the State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, in China. He has published more than 200 research papers and 10 books/chapter books in the field of experimental, mathematical and numerical modelling of nanofluids, heat recovery and acts as editor-in-chief of the Quarterly Journal of Mechanical Engineering and Innovation in Technology, Associate Editor of Fluid Dynamic & Material Processing, and an Editor for the International Journal of Mechanical Engineering (IJME), American Journal of Modelling and Optimization, and American Journal of Mechanical Engineering.