Dynamic Behavior of Materials

Dynamic Behavior of Materials: Fundamentals, Material Models, and Microstructure Effects provides readers with the essential knowledge and tools necessary to determine best practice design, modeling, simulation and application strategies for a variety of materials while also covering the fundamentals of how material properties and behavior are affected by material structure and high strain rates. The book examines the relationships between material microstructure and consequent mechanical properties, enabling the development of materials with improved performance and more effective design of parts and components for high-rate applications. Sections cover the fundamentals of dynamic material behavior, with chapters studying dynamic elasticity and wave propagation, dynamic plasticity of crystalline materials, ductile fracture, brittle fracture, adiabatic heating and strain localization, response to shock loading, various material characterization methods, such as the Hopkinson Bar Technique, the Taylor Impact Experiment, different shock loading experiments, recent advances in dynamic material behavior, the dynamic behaviors of nanocrystalline materials, bulk metallic glasses, additively manufactured materials, ceramics, concrete and concrete-reinforced materials, geomaterials, polymers, composites, and biomaterials, and much more. - Focuses on the relationship between material microstructure and resulting mechanical responses - Covers the fundamentals, characterization methods, modeling techniques, applications and recent advances of the dynamic behavior of a broad array of materials - Includes insights into manufacturing and processing techniques that enable more effective material design and application