Dynamic Modeling of Transport Process Systems
Autor: | C. A. Silebi, William E. Schiesser |
---|---|
EAN: | 9780080925820 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 02.12.2012 |
Kategorie: | |
Schlagworte: | algorithms differential equations error estimation models numerical integration solutions |
70,95 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book presents a methodology for the development and computer implementation of dynamic models for transport process systems. Rather than developing the general equations of transport phenomena, it develops the equations required specifically for each new example application. These equations are generally of two types: ordinary differential equations (ODEs) and partial differential equations (PDEs) for which time is an independent variable. The computer-based methodology presented is general purpose and can be applied to most applications requiring the numerical integration of initial-value ODEs/PDEs. A set of approximately two hundred applications of ODEs and PDEs developed by the authors are listed in Appendix 8.
Dr. William E. Schiesser is Emeritus McCann Professor of Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. He holds a PhD from Princeton University and a ScD (hon) from the University of Mons, Belgium. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs), and the development of mathematical models based on ODE/DAE/PDEs. He is the author or coauthor of more than 16 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations, and government agencies.
Dr. William E. Schiesser is Emeritus McCann Professor of Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. He holds a PhD from Princeton University and a ScD (hon) from the University of Mons, Belgium. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs), and the development of mathematical models based on ODE/DAE/PDEs. He is the author or coauthor of more than 16 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations, and government agencies.