Einstieg in Deep Reinforcement Learning

- Grundlegende Konzepte und Terminologie- Praktischer Einsatz mit PyTorch- Projekte umsetzenDieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen.Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von Börsengeschäften oder dem Aufbau eines Spiel-Bots an.Aus dem Inhalt:- Strukturierungsprobleme als Markov-Entscheidungsprozesse- Beliebte Algorithmen wie Deep Q-Networks, Policy Gradient-Methode und Evolutionäre Algorithmen und die Intuitionen, die sie antreiben- Anwendung von Verstärkungslernalgorithmen auf reale ProblemeEXTRA: E-Book insideSystemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions.

Verwandte Artikel

Download
PDF/ePUB
Einstieg in Deep Reinforcement Learning Alexander Zai, Brandon Brown

39,99 €*

Weitere Produkte vom selben Autor

Planck Brown, Brandon R

42,50 €*
Baseball Prospect 2019 Brown, Brandon James

17,50 €*
The Apollo Chronicles Brown, Brandon R.

49,00 €*