Emerging Nanomedicines for Diabetes Mellitus Theranostics
Autor: | Michael K Danquah, Jaison Jeevanandam |
---|---|
EAN: | 9780323853972 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 09.04.2022 |
Kategorie: | |
Schlagworte: | ?Animal models Antidiabetes Antidiabetic agents Antidiabetic drugs Biosensors Biosynthesis Clinical Commercialization Continuous glucose monitoring system Controlled drug delivery Cytotoxicity Diabetes Diabetes therapy Diagnosis Electro |
170,00 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Emerging Nanomedicines for Diabetes Mellitus Theranostics provides readers with information on the development of efficacious nanomedicines as potential theranostic agents for diabetes. The book discusses the application of various novel nanomaterials and nanocomposites for targeted delivery of insulin, glucose sensing, including nano-tattoos as glucose monitors, biosynthesized nanoparticles for diabetes treatment, and pre-clinical and clinical assays to evaluate the efficacy of nanomedicines for diabetes treatment. This is an important references source for materials scientists, pharmaceutical scientists and biomedical engineers who want to increase their understanding of how nanotechnology is being used to improve diabetes treatment. Diabetes has emerged as one of the most common diseases associated with lifestyle choices in the modern world, with significant mortality rates. Conventional treatment methods mainly involve insulin-based therapies. However, insulin therapy possesses several limitations such as weight gain and hypoglycemia. Thus, advanced research in nanomedicine is targeting the development of new and improved diagnostics and treatment methods for diabetes. - Explores the significance of nanomaterials and nanocomposites for the controlled delivery of insulin and effective diagnosis of diabetes - Assesses the efficacy of novel nano-tattoos as an emerging glucose monitoring system and the potential of biosynthesized nanoparticles as pharmaceutical ingredients for diabetes treatment - Describes various pre-clinical and clinical assays to evaluate the toxicity of nanomedicines, along with methods to mitigate the challenges associated with effective diabetes therapy via the use of nanorobots, nanoformulations and smartphone-based technologies
Dr. Danquah is a full Professor and the Director of Chemical Engineering Program at the University of Tennessee, Chattanooga, United States. He is a Chartered Engineer (CEng), Chartered Professional Engineer (CPEng), Chartered Scientist (CSci) and a Fellow of the Institution of Chemical Engineers (IChemE). Dr. Danquah's research focuses on the utilization of bioprocess and biomolecular engineering principles to develop emerging biopharmaceuticals, biosensing and molecular separation systems; environmental bioremediation systems; and biofuels and bio-products. Dr. Danquah's research findings are well published and cited with over 230 peer-reviewed journal articles, book chapters, conference publications and technical reports. His research has also resulted in intellectual properties and patent applications, large-scale manufacturing plants, and commercialized products and formulations.
Dr. Danquah is a full Professor and the Director of Chemical Engineering Program at the University of Tennessee, Chattanooga, United States. He is a Chartered Engineer (CEng), Chartered Professional Engineer (CPEng), Chartered Scientist (CSci) and a Fellow of the Institution of Chemical Engineers (IChemE). Dr. Danquah's research focuses on the utilization of bioprocess and biomolecular engineering principles to develop emerging biopharmaceuticals, biosensing and molecular separation systems; environmental bioremediation systems; and biofuels and bio-products. Dr. Danquah's research findings are well published and cited with over 230 peer-reviewed journal articles, book chapters, conference publications and technical reports. His research has also resulted in intellectual properties and patent applications, large-scale manufacturing plants, and commercialized products and formulations.