First Course in Algebra and Number Theory

First Course in Algebra and Number Theory presents the basic concepts, tools, and techniques of modern algebra and number theory. It is designed for a full year course at the freshman or sophomore college level. The text is organized into four chapters. The first chapter is concerned with the set of all integers - positive, negative, and zero. It investigates properties of Z such as division algorithm, Euclidean algorithm, unique factorization, greatest common divisor, least common multiple, congruence, and radix representation. In chapter 2, additional axioms about Z were introduced and some of their consequences are discussed. The third chapter sets up terminologies about polynomials, solutions or roots of polynomial equations, and factorization of polynomials. Finally, chapter 4 studies logically simpler algebraic systems, known as 'groups', algebraic objects with a single operation. The book is intended for students in the freshman and sophomore levels in college.