EAN: | 9783030187637 |
---|---|
Auflage: | 001 |
Sachgruppe: | Technik |
Sprache: | Englisch |
Seitenzahl: | 308 |
Produktart: | Gebunden |
Herausgeber: | Bartz-Beielstein, Thomas Filipi¿, Bogdan Koro¿ec, Peter Talbi, El-Ghazali |
Veröffentlichungsdatum: | 14.06.2019 |
Schlagworte: | ComputationalIntelligence; Many-ObjectiveOptimization; Surrogate-basedoptimization; ParallelOptimization; High-performanceAlgorithms; machinelearning Künstliche Intelligenz |
149,79 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That¿s where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.