Hybrid AC/DC Power Grids: Stability and Control Aspects
Autor: | Lasantha Meegahapola, Siqi Bu, Mingchen Gu |
---|---|
EAN: | 9783031063848 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 18.08.2022 |
Kategorie: | |
Schlagworte: | Hybrid ac/dc power grids;Voltage source converter;High voltage direct current;Multi-terminal direct current;Modular multilevel converter;Voltage stability;Frequency stability;Converter-driven stability;Oscillatory stability;Resonance |
149,79 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book covers modeling, control and stability aspects of hybrid AC/DC power networks. More specifically, this book provides an in-depth analysis of the stability and control aspects of hybrid AC/DC power grids, with comprehensive coverage of theoretical aspects of conventional stability issues (e.g., small-signal stability, voltage stability and frequency stability), emerging stability issues (e.g., converter associated stability) and control strategies applied in this emerging hybrid AC/DC power grids. This book takes a more pragmatic approach with a unique compilation of timely topics related to hybrid AC/DC networks compared with other books in this field. Therefore, this book provides the reader with comprehensive information on modeling, control and stability aspects which need to consider when modeling and analysis of hybrid AC/DC power grids for power system dynamics and stability studies.
Each chapter provides fundamental stability theories, some worked examples and case studies to explain various modeling, analysis and control concepts introduced in the chapter. Therefore, postgraduate research students, power system researchers and power system engineers benefit from the materials presented in this book and assist them to model and device new control strategies to overcome the stability challenges of the emerging hybrid AC/DC power grid.
Lasantha Meegahapola received the PhD degree from the Queen's University of Belfast, UK in 2010. He received the BSc. Eng. degree in Electrical Engineering (First Class, Honours) from the University of Moratuwa, Sri Lanka in 2006. Dr Meegahapola is currently employed as an Associate Professor with the Electrical and Biomedical Engineering, School of Engineering, RMIT University, Australia. Dr. Meegahapola was a Visiting Researcher/ Post-Doctoral Researcher at the Electricity Research Centre (ERC), University College Dublin, Ireland (2009-2010). From 2011 to 2014 he was employed as a Lecturer at the University of Wollongong (UOW) and continues as an Honorary Senior Fellow. Dr Meegahapola has more than 15 years' research experience in power system dynamics & stability with renewable power generation, and microgrid dynamics, stability & control. Dr Meegahapola has been involved with seminal research and industry projects, such as technical feasibility analysis of super-capacitors for providing frequency regulation services in wind-farms, and characterisation of combined-cycle gas-turbine lean blowout phenomenon. He has published more than 150 peer-reviewed journal and conference articles and has supervised 14 PhD students to completion to-date. He is a Senior Member of IEEE (SMIEEE), a Member of the IEEE Power Engineering Society (PES) and a Member of the IEEE Industry Applications Society (IAS). Dr. Meegahapola is an active member of the IEEE power and energy society (PES), power system dynamic performance (PSDP) committee task forces on microgrid stability analysis and microgrid dynamic modelling. Dr. Meegahapola is also serving as an Associate Editor of the IEEE Transactions on Power Systems, IEEE Power Engineering Letters, IEEE Transactions on Industry Applications and IET Renewable Power Generation journals.