This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle's power is provided by each source instant by instant.

Hybrid Electric Vehicles:

•introduces methods for modeling energy flow in hybrid electric vehicles;

•presents a standard mathematical formulation of the optimal control problem;

•discusses different optimization and control strategies for energy management, integrating the most recent research results; and

•carries out an overall comparison of the different control strategies presented.

Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actual implementation of energy management strategies. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.



Simona Onori is a Senior Research Associate at the Ohio State University Center for Automotive Research (CAR). She joined CAR in 2007 as a Postdoctoral Fellow. She received her Laurea Degree in Computer Science Engineering from the University of Rome 'Tor Vergata' (Italy), her MS in Electrical Engineering from the University of New Mexico (Albuquerque, NM, USA) and her PhD in Automation Engineering from the University of Rome 'Tor Vergata' in 2003, 2004 and 2007, respectively. She is an IEEE, ASME and SAE member. Her background is in control system theory. Her research focus is on energy management control for HEV and PHEV, fault diagnosis and prognosis with application to automotive systems, aging and characterisation of advanced batteries.
Giorgio Rizzoni is the Ford Motor Company Chair in ElectroMechanical Systems and a Professor of Mechanical and Electrical Engineering at The Ohio State University. He received his BS, MS and PhD (all in Electrical and Computer Engineering) in 1980, 1982 and 1986 respectively, all from the University of Michigan. Since 1999, he has been the Director of the Ohio State University Center for Automotive Research (CAR), an interdisciplinary university research centre in the College of Engineering. His research interests are in future ground vehicle propulsion systems, including advanced engines, electric and hybrid-electric drivetrains, advanced batteries and fuel cell systems. He is a Fellow of SAE (2005), a Fellow of IEEE (2004), a recipient of the 1991 National Science Foundation Presidential Young Investigator Award, and of several other technical and teaching awards.
Lorenzo Serrao is a lecturer and researcher at IFP Energies nouvelles (Rueil-Malmaison, France), where he works on modeling and control of hybrid electric vehicles. He received his MS in Mechanical Engineering from Politecnico di Torino (Italy) in 2003 and his PhD in Mechanical Engineering from the Ohio State University (OSU) in 2009 with a dissertation on control strategies for HEVs. During his studies at OSU, he was affiliated with the Center for Automotive Research (CAR). His research interests include energy management of electric and hybrid vehicles, powertrain modelling and simulation, vehicle dynamics and modelling of battery aging.
The experience of the authors in the area modeling and control  of hybrid electric vehicles  is demonstrated by a rich body of literature delivered over a decade of research in this field.

Verwandte Artikel

Hybrid Electric Vehicles Onori, Simona, Rizzoni, Giorgio, Serrao, Lorenzo

64,19 €*