Implementierung und Evaluation von Heuristiken aus dem Gebiet "Evolutionary Computation" zur Lösung komplexer Schedulingprobleme

Studienarbeit aus dem Jahr 2010 im Fachbereich Informatik - Angewandte Informatik, Note: 2,0, Technische Universität Dresden, Sprache: Deutsch, Abstract: Für die Planung von Produktionsabläufen bei der Waferbearbeitung werden verschiedene konventionelle Algorithmen eingesetzt. Diese sind, bedingt durch die Komplexität des Problems und die bei der Produktion entstehenden Kosten, zu optimieren. Ziel dieser Arbeit ist es ausgewählte evolutionäre Heuristiken von der Natur auf das Optimierungsproblem für ein Cluster Tool zu übertragen. Nach einer Beschreibung der Grundlagen, erfolgt die schrittweise Adaption des Ameisenalgorithmus und des Partikel Schwarm Algorithmus in ein mathematisches Modell. Anschließend finden eine Analyse der einzelnen Strategien, sowie ein Vergleich mit herkömmlichen Lösungsverfahren statt. Die Untersuchung zeigt, dass der Ameisenalgorithmus in den getesteten Formen für das gegebene kombinatorische sequenzabhängige Schedulingproblem nicht effizient nutzbar ist. Der Partikel Schwarm Algorithmus stellt im Gegensatz eine vorteilhafte Alternative zu bisherigen Verfahren dar.