Intelligent Image and Video Compression
Autor: | David Bull, Fan Zhang |
---|---|
EAN: | 9780128203545 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 07.04.2021 |
Untertitel: | Communicating Pictures |
Kategorie: | |
Schlagworte: | Arithmetic Coding Bayer filter CABAC CAVLC Entropy coding Error resilient video Exp Go color filter array color spaces color space transforms cross layer optimisation deblocking filter decimation discrete cosine transform error tracking |
113,00 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Intelligent Image and Video Compression: Communicating Pictures, Second Edition explains the requirements, analysis, design and application of a modern video coding system. It draws on the authors' extensive academic and professional experience in this field to deliver a text that is algorithmically rigorous yet accessible, relevant to modern standards and practical. It builds on a thorough grounding in mathematical foundations and visual perception to demonstrate how modern image and video compression methods can be designed to meet the rate-quality performance levels demanded by today's applications and users, in the context of prevailing network constraints. 'David Bull and Fan Zhang have written a timely and accessible book on the topic of image and video compression. Compression of visual signals is one of the great technological achievements of modern times, and has made possible the great successes of streaming and social media and digital cinema. Their book, Intelligent Image and Video Compression covers all the salient topics ranging over visual perception, information theory, bandpass transform theory, motion estimation and prediction, lossy and lossless compression, and of course the compression standards from MPEG (ranging from H.261 through the most modern H.266, or VVC) and the open standards VP9 and AV-1. The book is replete with clear explanations and figures, including color where appropriate, making it quite accessible and valuable to the advanced student as well as the expert practitioner. The book offers an excellent glossary and as a bonus, a set of tutorial problems. Highly recommended! --Al Bovik - An approach that combines algorithmic rigor with practical implementation using numerous worked examples - Explains how video compression methods exploit statistical redundancies, natural correlations, and knowledge of human perception to improve performance - Uses contemporary video coding standards (AVC, HEVC and VVC) as a vehicle for explaining block-based compression - Provides broad coverage of important topics such as visual quality assessment and video streaming
Professor David R. Bull PhD, FIET, FIEEE, CEng. obtained his PhD from the University of Cardiff in 1988. He currently holds the Chair in Signal Processing at the University of Bristol where he is head of the Visual Information Laboratory and Director of Bristol Vision Institute, a group of some 150 researchers in vision science, spanning engineering, psychology, biology, medicine and the creative arts. In 1996 David helped to establish the UK DTI Virtual Centre of Excellence in Digital Broadcasting and Multimedia Technology and was one of its Directors from 1997-2000. He has also advised Government through membership of the UK Foresight Panel, DSAC and the HEFCE Research Evaluation Framework. He is also now Director of the UK Government's new MyWorld Strength in Places programme. David has worked widely across image and video processing focused on streaming, broadcast and wireless applications. He has published over 600 academic papers, various articles and 4 books and has given numerous invited/keynote lectures and tutorials. He has also received awards including the IEE Ambrose Fleming Premium for his work on Primitive Operator Digital Filters and a best Paper Award for his work on Link Adaptation for Video Transmission. David's work has been exploited commercially and he has acted as a consultant for companies and governments across the globe. In 2001, he co-founded ProVision Communication Technologies Ltd., who launched the world's first robust multi-source wireless HD sender for consumer use. His recent award-winning and pioneering work on perceptual video compression using deep learning, has produced world-leading rate-quality performance.
Professor David R. Bull PhD, FIET, FIEEE, CEng. obtained his PhD from the University of Cardiff in 1988. He currently holds the Chair in Signal Processing at the University of Bristol where he is head of the Visual Information Laboratory and Director of Bristol Vision Institute, a group of some 150 researchers in vision science, spanning engineering, psychology, biology, medicine and the creative arts. In 1996 David helped to establish the UK DTI Virtual Centre of Excellence in Digital Broadcasting and Multimedia Technology and was one of its Directors from 1997-2000. He has also advised Government through membership of the UK Foresight Panel, DSAC and the HEFCE Research Evaluation Framework. He is also now Director of the UK Government's new MyWorld Strength in Places programme. David has worked widely across image and video processing focused on streaming, broadcast and wireless applications. He has published over 600 academic papers, various articles and 4 books and has given numerous invited/keynote lectures and tutorials. He has also received awards including the IEE Ambrose Fleming Premium for his work on Primitive Operator Digital Filters and a best Paper Award for his work on Link Adaptation for Video Transmission. David's work has been exploited commercially and he has acted as a consultant for companies and governments across the globe. In 2001, he co-founded ProVision Communication Technologies Ltd., who launched the world's first robust multi-source wireless HD sender for consumer use. His recent award-winning and pioneering work on perceptual video compression using deep learning, has produced world-leading rate-quality performance.