Interval Finite Element Method with MATLAB

Interval Finite Element Method with MATLAB provides a thorough introduction to an effective way of investigating problems involving uncertainty using computational modeling. The well-known and versatile Finite Element Method (FEM) is combined with the concept of interval uncertainties to develop the Interval Finite Element Method (IFEM). An interval or stochastic environment in parameters and variables is used in place of crisp ones to make the governing equations interval, thereby allowing modeling of the problem. The concept of interval uncertainties is systematically explained. Several examples are explored with IFEM using MATLAB on topics like spring mass, bar, truss and frame. - Provides a systematic approach to understanding the interval uncertainties caused by vague or imprecise data - Describes the interval finite element method in detail - Gives step-by-step instructions for how to use MATLAB code for IFEM - Provides a range of examples of IFEM in use, with accompanying MATLAB codes

Dr Sukanta Nayak is Assistant Professor in the Department of Mathematics, at the Amrita School of Engineering in Coimbatore, India. He previously held a postdoctoral research fellowship at the University of Johannesburg, South Africa, and received his Ph.D. in mathematics from the National Institute of Technology Rourkela, in India. His research interests include numerical analysis, linear algebra, fuzzy finite element method, fuzzy heat, neutron diffusion equations, fuzzy stochastic differential equations and wavelet analysis. He has published widely in the field, including as co-author of a book entitled Interval Finite Element Method with MATLAB, for Elsevier's Academic Press (2018).