EAN: | 9780323857642 |
---|---|
Sachgruppe: | Biologie |
Sprache: | Englisch |
Seitenzahl: | 352 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Birbrair, Alexander |
Veröffentlichungsdatum: | 30.04.2021 |
Schlagworte: | Science |
182,50 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. iPSCs for Modeling Central Nervous System Disorders, Volume 6 addresses how induced pluripotent stem cells can be used to model various CNS disorders. Somatic cells can be reprogrammed intöInduced pluripotent stem cells¿by the expression of specific transcription factors. These cells¿are transforming biomedical research in the last 15 years. The volume teaches readers about current advances in the field. This book describes the use of induced pluripotent stem cells to model several CNS diseases in vitro, enabling us to study the cellular and molecular mechanisms involved in different CNS pathologies. Further insights into these mechanisms will have important implications for our understanding of CNS disease appearance, development, and progression. In recent years, remarkable progress has been made in the obtention of induced pluripotent stem cells and their differentiation into several cell types, tissues and organs using state-of-art techniques. These advantages facilitated identification of key targets and definition of the molecular basis of several CNS disorders. This volume will cover what we know so far about the use of iPSCs to model different CNS disorders, such as: Alzheimer's disease, Autism, Amyotrophic Lateral Sclerosis, Schizophrenia, Fragile X Syndrome, Spinal Muscular Atrophy, Rett Syndrome, Angelman syndrome, Parkinson`s Disease, Leber Hereditary Optic Neuropathy, Anorexia Nervosa, and more. The volume is written for researchers and scientists interested in stem cell therapy, cell biology, regenerative medicine, and neuroscience; and is contributed by world-renowned authors in the field.