Kähler Immersions of Kähler Manifolds into Complex Space Forms
Autor: | Loi, Andrea Zedda, Michela |
---|---|
EAN: | 9783319994826 |
Auflage: | 001 |
Sachgruppe: | Mathematik |
Sprache: | Englisch |
Seitenzahl: | 112 |
Produktart: | Kartoniert / Broschiert |
Veröffentlichungsdatum: | 11.10.2018 |
Schlagworte: | Analysis Calculus Differenzialgeometrie Differenzialgeometrie / Riemann Geometrie / Differenzialgeometrie Riemannsche Geometrie |
48,14 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry.