Machine Learning in Earth, Environmental and Planetary Sciences

Machine Learning in Earth, Environmental and Planetary Sciences: Theoretical and Practical Applications is a practical guide on implementing different variety of extreme learning machine algorithms to Earth and environmental data. The book provides guided examples using real-world data for numerous novel and mathematically detailed machine learning techniques that can be applied in Earth, environmental, and planetary sciences, including detailed MATLAB coding coupled with line-by-line descriptions of the advantages and limitations of each method. The book also presents common postprocessing techniques required for correct data interpretation. This book provides students, academics, and researchers with detailed understanding of how machine learning algorithms can be applied to solve real case problems, how to prepare data, and how to interpret the results. - Describes how to develop different schemes of machine learning techniques and apply to Earth, environmental and planetary data - Provides detailed, guided line-by-line examples using real-world data, including the appropriate MATLAB codes - Includes numerous figures, illustrations and tables to help readers better understand the concepts covered

Prof. Hossein Bonakdari obtained his PhD in civil engineering from the University of Caen Normandy, France. He has worked for several organizations, most recently as Professor at the Department of Civil Engineering, University of Ottawa, Canada. He is one of the most influential scientists in the field of developing novel algorithms for solving practical problems through the decision-making abilities of artificial intelligence. His research also focuses on creating comprehensive methodologies in the areas of simulation modeling, optimization, and machine learning algorithms. The results obtained from his research have been published in international journals and presented at international conferences. He was included in the list of the world's top 2% scientists, published by Stanford University, and is on the editorial board of several journals.

Verwandte Artikel

Machine Learning in Earth, Environmental and Planetary Sciences Bonakdari, Hossein, Ebtehaj, Isa, Ladouceur, Joseph D.

162,50 €*