Mathematical Analysis: Functions, Limits, Series, Continued Fractions provides an introduction to the differential and integral calculus. This book presents the general problems of the theory of continuous functions of one and several variables, as well as the theory of limiting values for sequences of numbers and vectors. Organized into six chapters, this book begins with an overview of real numbers, the arithmetic linear continuum, limiting values, and functions of one variable. This text then presents the theory of series and practical methods of summation. Other chapters consider the theory of numerical series and series of functions and other analogous processes, particularly infinite continued fractions. This book discusses as well the general problems of the reduction of functions to orthogonal series. The final chapter deals with constants and the most important systems of numbers, including Bernoulli and Euler numbers. This book is a valuable resource for mathematicians, engineers, and research workers.