Mathematische Modelle und Methoden zur Genexpressionsanalyse in der Bioinformatik

Inhaltsangabe:Einleitung: Wie in vielen anderen Bereichen der Informatik, spielt auch in der Bioinformatik die Mathematik eine sehr bedeutende Rolle. Sie stellt Grundlagen, Modelle und Algorithmen bereit, die eine Problemlösung, Analyse oder Simulation in Form von Programmen überhaupt erst ermöglichen. Mit dieser Arbeit soll ein spezieller Teilbereich dieser mathematischen Grundlagen der Bioinformatik näher beleuchtet werden, nämlich mathematische Modelle und Methoden, die gegenwärtig bei der Analyse der Genexpression zum Einsatz kommen. Es entspricht hierbei nicht der Zielsetzung, die komplexen biologischen Vorgänge detailliert zu erläutern. Vielmehr sollen nur die für das Verständnis der mathematischen Aufgabenstellungen erforderlichen biologischen Grundlagen in ihren Grundzügen dargestellt werden. Diese Arbeit soll es dem Leser ermöglichen, auch ohne fundierte biologische Vorkenntnisse einen Eindruck davon zu gewinnen, was die moderne Mathematik im Bereich der Genexpressionsanalyse als Schnittstelle von Molekularbiologie und Informatik zu leisten im Stande ist. Gang der Untersuchung: Das Kapitel Biologische Grundlagen führt hierzu einige Grundbegriffe aus dem Bereich der Genetik - wie DNA, Proteine oder Genexpression - ein, deren Kenntnis für das Verständnis dieser Arbeit erforderlich sein wird. Ferner wird dargestellt, wie Versuchsergebnisse durch den Einsatz neuer Techniken wie DNA-Mikroarrays quantifizierbar und damit für mathematische Ansätze zugänglich gemacht werden. Daran schließt sich eine Betrachtung Boolescher Netzwerke als Modelle der Genregulation an. Nach Einführung einiger Grundlagen stehen unterschiedliche Algorithmen zur Netzwerkidentifikation im Zentrum der Betrachtung; so auch der Reverse-Engineering-Algorithmus (REVEAL) von Fuhrman, Liang und Somogyi. Im Kapitel Clustering-Methoden wird der häufig der Netzwerkidentifikation vorgeschaltete Prozess des Gen-Clustering erläutert. Hierbei wird dargestellt, wie aus dem gigantischen Vorrat an Genen diejenigen zur Betrachtung isoliert werden, die mit einem bestimmten zu untersuchenden Vorgang oder einer Krankheit in Verbindung stehen. Mit dem Unweighted-Pair-Grouping-Method-Algorithm und K-means werden exemplarisch sowohl eine hierarchische, wie auch eine nicht-hierarchische Clustering-Methode vorgestellt. Beispiele verdeutlichen die Arbeitsweise der Algorithmen. Mit Bayesianische Netzwerke als Modelle der Genregulation ist ein Kapitel überschrieben, welches einen [...]