Mechanism of Depolymerization of Cellulose in Low Sulfuric Acid Medium. Kinetic Investigation and Stochastic Simulation

Doctoral Thesis / Dissertation from the year 1994 in the subject Engineering - Chemical Engineering, grade: 3.7, Université Laval, language: English, abstract: The final objective of this investigation is to model the kinetic behaviour of cellulose during hydrolysis by means of stochastic simulation. Part I of this study will thus report the experimental determination of kinetic parameters to be used in the simulation. These were established from kinetic experiments on cellobiose hydrolysis and glucose degradation. Furthermore, both cotton morphology and outer layer are analysed and the effects of cotton wax on cellulose depolymerization are studied. Finally, the effects of cotton milling on both cellulose depolymerization and glucose yield are investigated and presented in this first part. Part II will deal more specifically with the stochastic modelling of these data. This simulation should be realistic enough to allow a representation of the effect of milling on the cellulose structure and its influence on acid hydrolysis kinetics.

Zin Eddine Dadach obtained his Bachelor's degree in Refining and Petro-chemistry from the Algerian Institute of Petroleum in 1980. He received his Master's degree in Chemical Engineering from Stevens Institute of Technology (Hoboken, N.J.; USA) in 1984. In a pioneering research study, experimental data for the absorption rates of CO2, H2S, and a mixture of both in hindered amine, 2-amino-2-methyl-1-propanol (AMP) aqueous solutions (0.03 M, 0.1 M, 0.2 M and 0.3 M) were investigated for the first time. Dr. Dadach obtained his Ph.D. degree in Chemical Engineering from Laval University (Quebec, Canada) in 1994. In the dissertation work, Markov chains and Monte Carlo technique were used to stochastically simulate glucose yield during cellulose acid hydrolysis by using model compound cellobiose and cotton crystallinity data. Simulation results were compared to experimental data. He worked in an organic materials department at the Osaka National Research Institute (Osaka, Japan) for two years where he developed a FORTRAN program on Markov analysis of DNA sequences of psbA genes of Synechocystis PCC 6803 in order to determine which genes might be responsible for divergent behavior of transcription in response to light intensity. Since he joined the Higher Colleges of Technology (Abu Dhabi, UAE) in 2005, Dr. Dadach has developed active learning strategies to enhance the intrinsic motivation of students. In a recent published article, he presented a new tool to quantify the effects of an active learning strategy on the motivation of students. He supervised a number of student's final industrial projects including Stripper High Differential Pressure, Sea water back pressure tower foaming, Effluent system salt formation, Carbon Capture and Storage strategies, Hysys simulation of chemical processes, and exergy analysis of power generation plants