Neural Networks for Perception

Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model of object recognition in human vision, the self-organization of functional architecture in the cerebral cortex, and the structure and interpretation of neuronal codes in the visual system are detailed under this part. Part two covers the relevance of neural networks for machine perception. Subjects considered under this section include the multi-dimensional linear lattice for Fourier and Gabor transforms, multiple- scale Gaussian filtering, and edge detection; aspects of invariant pattern and object recognition; and neural network for motion processing. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.

Weitere Produkte vom selben Autor

Download
PDF
Reliable Face Recognition Methods Harry Wechsler

117,69 €*
Download
PDF
Neural Networks for Perception Harry Wechsler

54,95 €*
Download
PDF
Computational Vision Harry Wechsler

54,95 €*