Neurochemical Aspects of Alzheimer's Disease
Autor: | Akhlaq A. Farooqui |
---|---|
EAN: | 9780128099384 |
eBook Format: | ePUB/PDF |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 25.05.2017 |
Untertitel: | Risk Factors, Pathogenesis, Biomarkers, and Potential Treatment Strategies |
Kategorie: | |
Schlagworte: | Acetylcholinesterase Alzheimer disease Amyloid-�Amyloid precursor protein Astrocyte Bapineuzumab Blood�brain barrier Cerebrospinal fluid Cholesterol Dementia FDG Fibrillar A�Neurodegeneration Glyc γ-Secretase modulator �-Amyloid |
91,95 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Neurochemical Aspects of Alzheimer's Disease provides a comprehensive overview of molecular aspects of risk factors, pathogenesis, biomarkers, and therapeutic strategies. The book focuses on molecular mechanisms and signal transduction processes associated with the pathogenesis, biomarkers, and therapeutic strategies of AD. The comprehensive and cutting edge information in this monograph may not only help in early detection of AD, but also promote discovery of new drugs to treat this chronic disease. Chapters discuss involvement of neural membrane phospholipids, sphingolipids, and cholesterol-derived lipid mediators, abnormal APP processing, and nucleic acid damage, risk factors, biomarker, and therapeutic strategies of Alzheimer's disease. This book is written for neurologists, neuroscientists, neurochemists, neuropharmacologists, and clinicianswho are interested in molecular mechanisms associated with the pathogenesis of age-related neurological disorders. - Provides a comprehensive overview of molecular aspects of risk factors, pathogenesis, biomarkers, and therapeutic strategies for Alzheimer's disease - Written for researchers, clinicians, and advanced graduate students in neurology, neuroscience, neurochemistry, and neuropharmacology - Acts as the first book to provide a comprehensive description of the signal transduction processes associated with pathogenesis of Alzheimer's disease
Akhlaq A. Farooqui is a leader in the field of signal transduction processes, lipid mediators, phospholipases, glutamate neurotoxicity, and neurological disorders. He is a research scientist in the Department of Molecular and Cellular Biochemistry at The Ohio State University. He has published cutting edge research on the role of phospholipases A2 in signal transduction processes, generation and identification of lipid mediators during neurodegeneration by lipidomics. He has studied the involvement of glycerophospholipid, sphingolipid-, and cholesterol-derived lipid mediators in kainic acid neurotoxicity, an experimental model of neurodegenerative diseases. Akhlaq A. Farooqui has discovered the stimulation of plasmalogen- selective phospholipase A2 in brains of patients with Alzheimer disease (AD). Stimulation of this enzyme may not only be responsible for the deficiency of plasmalogens in neural membranes of AD patients, but also be related to the loss of synapse in the AD.
Akhlaq A. Farooqui is a leader in the field of signal transduction processes, lipid mediators, phospholipases, glutamate neurotoxicity, and neurological disorders. He is a research scientist in the Department of Molecular and Cellular Biochemistry at The Ohio State University. He has published cutting edge research on the role of phospholipases A2 in signal transduction processes, generation and identification of lipid mediators during neurodegeneration by lipidomics. He has studied the involvement of glycerophospholipid, sphingolipid-, and cholesterol-derived lipid mediators in kainic acid neurotoxicity, an experimental model of neurodegenerative diseases. Akhlaq A. Farooqui has discovered the stimulation of plasmalogen- selective phospholipase A2 in brains of patients with Alzheimer disease (AD). Stimulation of this enzyme may not only be responsible for the deficiency of plasmalogens in neural membranes of AD patients, but also be related to the loss of synapse in the AD.