Nonlinear Differential Equations in Micro/nano Mechanics

Nonlinear Differential Equations in Micro/nano Mechanics: Application in Micro/Nano Structures in Electromechanical Systems presents a variety of various efficient methods, including Homotropy methods, Adomian methods, reduced order methods and numerical methods for solving the nonlinear governing equation of micro/nanostructures. Various structures, including beam type micro/nano-electromechanical systems (MEMS/NEMS), carbon nanotube and graphene actuators, nano-tweezers, nano-bridges, plate-type microsystems and rotational micromirrors are modeled. Nonlinearity due to physical phenomena such as dispersion forces, damping, surface energies, microstructure-dependency, non-classic boundary conditions and geometry, and more is included. - Establishes the theoretical foundation required for the modeling, simulation and theoretical analysis of micro/nanostructures and MEMS/NEMS (continuum-based solid mechanics) - Covers various solution methods for investigating the behavior of nanostructures (applied mathematics) - Provides the simulation of different physical phenomena of covered nanostructures

Dr. Ali Koochi is currently an assistant professor of Mechanical Engineering at the University of Torbat Heydarieh, Iran. He obtained his Ph.D. (2016) from Amirkabir University of Technology (AUT), M.S. degree (2009) from Sharif University of Technology (SUT) and his undergraduate B.S. degree (2006) from AUT. His general academic areas of interest include MEMS/NEMS, Dynamic Instability, Piezo/Magneto Materials, and Applied Mathematics.