Pavement Materials for Heat Island Mitigation

About 90 percent of this excessive heat is due to buildings and pavements that absorb and store solar heat (According to the Green Buildings Council). The only reference that focuses specifically on pavements, Pavement Materials for Heat Island Mitigation: Design and Management Strategies explores different advanced paving materials, their properties, and their associated advantages and disadvantages. Relevant properties of pavement materials (e.g. albedo, permeability, thermal conductivity, heat capacity and evaporation rate) are measured in many cases using newly developed methods. - Includes experimental methods for testing different types of pavements materials - Identifies different cool pavement strategies with their advantages and associated disadvantages - Design and construct local microclimate models to evaluate and validate different cool pavement materials in different climate regions

Dr. Hui Li is a research scientist in the Department of Civil and Environmental Engineering at the University of California Davis and is a registered Professional Engineer in the State of California. Dr. Hui Li is also a Professor in the School of Transportation at Tongji University, Shanghai, China. He completed his Ph.D. in Civil and Environmental Engineering at University of California Davis. He holds a B.S. in Civil Engineering and a M.S. in Highway and Railway Engineering from the Southeast University, Nanjing, China. Dr. Li also holds a M.S. in Environmental and Resource Economics from University of California, Davis. Dr. Li's research interests and expertise include sustainable pavement, resilient infrastructure systems, sustainable development in built environment, environmental impact assessment, life cycle assessment, and numerical modeling and simulation. Dr. Li currently a member of the Committee on Environmental Analysis in Transportation (ADC10) in Transportation Research Board (TRB), the Technical Committee of the Transportation & Development Institute in American Society of Civil Engineers (ASCE), the Technical Committees on Sustainability of Concrete(ACI 130) and on Pervious Concrete(ACI 522) in American Concrete Institute (ACI).

Weitere Produkte vom selben Autor