Plasmaunterstützte Molekularstrahlepitaxie von AlGaN/GaN-Heterostrukturen

Ziel dieser Arbeit ist die Herstellung hochqualitativer AlGaN/GaN-Heterostrukturen mittels Molekularstrahlepitaxie (MBE) für die Anwendung in Transistoren mit hoher Elektronenbeweglichkeit (HEMTs). Eingangs wird das verwendete MBE-System systematisch charakterisiert. Dabei werden technisch relevante Parameter, wie die Schichtdickeninhomogenität, untersucht. Davon ausgehend wird der Einfluss der Wachstumsbedingungen auf die Morphologie und Kristallqualität der gewachsenen GaN-Schichten untersucht. Sie zeichnen sich durch atomar glatte Oberflächen und beste Kristallqualität aus. Anschließend steht die Entwicklung hochpräziser und ultrareiner Heterostrukturen im Fokus. Dazu werden kurzperiodische AlGaN/GaN-Übergitter als vielseitige Teststruktur etabliert. Hochaufgelöste Röntgenbeugung an diesen Übergittern erlaubt Zugriff auf relevante Strukturparameter wie Aluminiumgehalt, Schichtdicke, Kristallqualität und Grenzflächenperfektion. Die Ergebnisse zeigen das Erreichen extrem scharfer Grenzflächen, exakter Schichtdickenkontrolle und hochpräziser Periodizität in den Heterostrukturen an. Die Substratqualität stellt sich dabei als limitierender Faktor für die strukturelle Perfektion der MBE-gewachsenen Strukturen heraus. Zeitaufgelöste Photolumineszenzmessungen an ausgewählten Übergittern zeigen zudem, dass die Exzitonenlebensdauer analog zur strukturellen Qualität mit zunehmender Versetzungsdichte im verwendeten Substrat abnimmt. Untersuchungen zur Reinheit des gewachsenen GaNs zeigen, dass Sauerstoff, der als Donator wirkt, die dominierende Hintergrundverunreinigung ist. Es zeigt sich, dass unter optimaler Wachstumsstöchiometrie die Wachstumstemperatur der Schlüsselparameter für die Kontrolle seines Einbaus ist. Alle 50 K reduziert sich die Konzentration an eingebautem Sauerstoff um eine Größenordnung. Bei einer Wachstumstemperatur von 665 °C zeigt das gewachsene GaN isolierendes Verhalten. Diese Materialreinheit ist die Grundvoraussetzung für ein präzises Schaltverhalten aufgebauter HEMT-Teststrukturen. Hallmessungen bei tiefen Temperaturen zeigen gleichzeitig eine Zunahme der Ladungsträgermobilität im 2DEG-Kanal mit sinkender Sauerstoffkonzentration. Ausgeprägter Quantentransport bei tiefen Temperaturen belegt bereits bei moderaten Magnetfeldern das Erreichen des Quantenlimits. Diese Ergebnisse zeigen die hohe Qualität der hergestellten aktiven Strukturen und ihre Anwendbarkeit in Transistoren mit hoher Elektronenbeweglichkeit.

Felix Schubert wurde am 15. September 1988 in Karl-Marx-Stadt (heute Chemnitz) geboren. Von 2006 bis 2011 studierte er an der Technischen Universität Bergakademie Freiberg und schloss im Dezember 2011 sein Studium mit dem Titel des Diplom-Ingenieurs für Elektronik- und Sensormaterialen ab. Im Januar 2012 begann er daraufhin seine Promotion an der Technischen Universität Dresden im Promotionsstudiengang Elektrotechnik. Ende 2015 reichte er seine Dissertationsschrift an der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden ein und verteidigte seine Forschungsergebnisse im Rahmen einer Disputation, nachdem er zuvor sein Rigorosum erfolgreich bestanden hat. Die Veröffentlichung seiner Arbeit stellt den Abschluss seines Promotionsverfahrens dar.

Weitere Produkte vom selben Autor

Hamburgs 'Baseball­schlägerjahre' Krebs, Felix, Schubert, Florian

14,80 €*