Principal Manifolds for Data Visualization and Dimension Reduction
Autor: | Alexander N. Gorban, Balázs Kégl, Donald C. Wunsch, Andrei Y. Zinovyev |
---|---|
EAN: | 9783540737506 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 11.09.2007 |
Kategorie: | |
Schlagworte: | Analysis Clustering algorithm algorithms computer computer science data analysis linear optimization multidimensional scaling nonlinear optimization principal component analysis statistics visualization |
234,33 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.