Problems and Methods in Analysis

Problems and Methods in Analysis, Volume 2 provides information pertinent to the methods of calculus. This book provides solutions to problems in analytical calculus. Organized into five chapters, this volume begins with an overview of the integration of functions that are not defined or are not bounded at a finite number of points, and with integrals in which the interval of integration is infinitely large. This text then defines the radius of curvature and provides the formula for curvature and radius of curvature. Other chapters consider the equation of tangent and normal. This book discusses as well the amplitudes of the harmonic components of a set of oscilloscope time base potentials. The final chapter deals with the Euler-Fourier formula, the Fourier series, and Dirichlet's conditions. This book is intended to be suitable for sixth form students, particularly scholarship students. First year university students who need a systematic course in calculus will also find this book useful.