Reinforcement Learning im Cournot Duopol

Diplomarbeit aus dem Jahr 2007 im Fachbereich VWL - Mikroökonomie, allgemein, Note: 1,7, Ruprecht-Karls-Universität Heidelberg (Alfred-Weber-Institut), Veranstaltung: Wirtschaftstheorie, Sprache: Deutsch, Abstract: Diese Arbeit untersucht den Einsatz agentenbasierter Lernalgorithmen im wiederholten Cournot-Spiel. Es werden zwei unterschiedliche Implementierungen (eine nach Roth-Erev, die andere nach Watkins Q-Learning) des sogenannten Reinforcement Learning untersucht. Diese Implementierungen werden in die Modellwelt des bekannten Cournot-Spiels gesetzt, um gegeneinander zu spielen. Es sind Arbeiten bekannt, in denen Q-Learning Agengenten, kooperierendes Verhalten lernen. Es ist Ziel dieser Arbeit, die Unterschiede theoretisch herauszuarbeiten und praktisch in Java zu implementieren. Dabei soll die Frage geklärt werden, warum nur Q-Learning kooperierendes Verhalten erzeugt.

Verwandte Artikel