Robust Recognition via Information Theoretic Learning
Autor: | He, Ran Hu, Baogang Wang, Liang Yuan, Xiaotong |
---|---|
EAN: | 9783319074153 |
Sachgruppe: | Informatik, EDV |
Sprache: | Englisch |
Seitenzahl: | 124 |
Produktart: | Kartoniert / Broschiert |
Veröffentlichungsdatum: | 09.09.2014 |
Schlagworte: | Bildbearbeitung Bildverarbeitung Grafik (EDV) / Bildverarbeitung |
53,49 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.