Superhydrophobicity of Surfaces Dressed by Electrospun Fibers
Autor: | Yi Zhang |
---|---|
EAN: | 9783031555527 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 31.03.2024 |
Kategorie: | |
Schlagworte: | Electrospinning;Microfiber;Nanofiber;Surface dressing;Superhydrophobicity;Lotus effect;rose-petal effect |
149,79 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
This book provides insights into the wetting behavior on fiber-dressed surfaces and guidelines for developing superhydrophobicity based on electrospinning. In developing superhydrophobicity, electrospinning possesses the following advantages over other fabrication techniques. First, the electrospun micro- and nanofibers, which may also featured with secondary fiber morphology, provide sufficient surface roughness for superhydrophobicity. Second, electrospinning is considered an additive manufacturing technique, so the surfaces to be modified are not destroyed for superhydrophobicity. Third, the introduced electrospun structure is featured with high porosity with inter-fiber pores, allowing for a high vapor transmission rate, which is necessary in many applications such as wound dressing, gas sensor.However, books focused on developing superhydrophobicity using electrospinning are rarely found. Electrospinning is only introduced as one section in most superhydrophobicity-related books, and the mechanism of superhydrophobicity by different electrospinning-based methods lacks detailed explanation.
Yi Zhang received his BSc and MSc degrees from Shandong University, China, and Chinese Academy of Sciences, China, respectively. Prior to studying in University of Waterloo, he studied as Research Assistant in Rensselaer Polytechnic Institute, USA for two years. Yi's research interests are on the thermophysics in interfacial engineering including wetting and thermal transport, and energy systems including energy storage and renewable energy. He has published peer-reviewed 14 papers in scientific journals such as Applied Energy, Journal of Applied Physics, Colloids and Surfaces A, with 1 china and 1 US patents, and made 2 oral presentations at international conferences in his fields of research.