Support Vector Machines for Pattern Classification
Autor: | Shigeo Abe |
---|---|
EAN: | 9781849960984 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 23.07.2010 |
Kategorie: | |
Schlagworte: | Fuzzy Systems Kernel Methods Neural Networks Pattern Classification Support Vector Machine Support Vector Machines classification |
149,79 €*
Versandkostenfrei
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.