Symplectic Geometry of Integrable Hamiltonian Systems
Autor: | Audin, Michèle Cannas Da Silva, Ana Lerman, Eugene |
---|---|
EAN: | 9783764321673 |
Sachgruppe: | Mathematik |
Sprache: | Englisch |
Seitenzahl: | 240 |
Produktart: | Kartoniert / Broschiert |
Veröffentlichungsdatum: | 24.04.2003 |
Schlagworte: | Differenzialgeometrie Geometrie / Differenzialgeometrie |
42,75 €*
Die Verfügbarkeit wird nach ihrer Bestellung bei uns geprüft.
Bücher sind in der Regel innerhalb von 1-2 Werktagen abholbereit.
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).