Tensors for Data Processing

Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application

Verwandte Artikel

Weitere Produkte vom selben Autor

Download
PDF
Tensor Computation for Data Analysis Yipeng Liu, Jiani Liu, Zhen Long, Ce Zhu

117,69 €*