This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray¿Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.

Weitere Produkte vom selben Autor

The Hybrid High-Order Method for Polytopal Meshes Droniou, Jérôme, Di Pietro, Daniele Antonio

149,79 €*
The Hybrid High-Order Method for Polytopal Meshes Droniou, Jérôme, Di Pietro, Daniele Antonio

149,79 €*